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ABSTRACT

In the past decade, a variety of algorithms have been introduced to downscale passive microwave soil

moisture observations. Some exploit the soil moisture information from optical/thermal sensing of land

surface temperature (LST) and vegetation dynamics while others use active microwave (radar) observations.

In this study, downscaled soil moisture data at 9- or 1-km resolution from several algorithms are inter-

compared against in situ soil moisture measurements to determine their reliability in an operational system.

The finescale satellite data used here for downscaling the coarse-scale SMAP data are observations of LST

from the Geostationary Operational Environmental Satellite (GOES) and vegetation index (VI) from the

NASA Moderate Resolution Imaging Spectroradiometer (MODIS) for the warm seasons in 2015 and 2016.

Three recently developed downscaling algorithms are evaluated and compared: a simple regression algorithm

based on 9-km thermal inertial data, a data mining approach called regression tree based on 9- and 1-km LST

and VI, and the NASA SMAP enhanced 9-km soil moisture product algorithm. Seven sets of in situ soil

moisture data from intensive networks were used for validation, including 1) the CREST-SMART network in

Millbrook, NewYork; 2)WalnutGulchWatershed inArizona; 3) LittleWashitaWatershed inOklahoma; 4) Fort

Cobb Reservoir Experimental Watersheds in Oklahoma; 5) Little River Watershed in Georgia; 6) the Tibetan

Plateau network inChina, and 7) theOzNet inAustralia. Soilmoisturemeasurements of the in situ networkswere

upscaled to the corresponding SMAP reference pixels at 9 km and used to assess the accuracy of downscaled

products at a 9-km scale. Results revealed that the downscaled 9-km soil moisture products generally outperform

the 36-km product for most in situ datasets. The linear regression algorithm using the thermal sensing based

evaporative stress index (ESI) had the best agreement with the in situ measurements from networks in the

contiguous United States according to the site-by-site comparison. In addition, the inertial thermal linear re-

gression method demonstrated the lowest unbiased RMSEwhen comparing to thematched-up in situ datasets as

well. In general, this method is promising for operational generation of fine-resolution soil moisture data product.

1. Introduction

Soil moisture (SM) information is required for the

initialization of numerical weather, climate, hydrologi-

cal, and ecological prediction models, because of its

impact on the water, energy, and carbon exchanges be-

tween land surface and the atmosphere (Entekhabi et al.

1996). The Soil Moisture Active Passive (SMAP) sat-

ellite mission launched by NASA on 31 January 2015
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was designed to be the best SM observatory in terms

of data quality and spatial resolution (Chan et al.

2018; Piepmeier et al. 2016). The high-quality coarse-

resolution L-band radiometer observations and SM re-

trievals have been generated and made available to the

public since April 2015. However, the high-spatial-

resolution SM retrievals were obtained for only 84 days

before the loss of the L-band radar on 7 July 2015.

In addition to the L-band radar backscatter coefficient

that was expected from SMAP for radiometer down-

scaling, some observations from other satellite sensors

at fine spatial resolution have also been found sensitive

to SM. Examples are the C-band radar backscatter

from ESA Sentinel-1A and land surface temperature

(LST), albedo (A), and vegetation indices (VI) from

various optical/thermal sensors (such as GOES, VIIRS,

MODIS, and AVHRR). Attempts to generate SM data

products from these satellite observations have been

well documented [e.g., Sabel et al. (2007) using scanning

synthetic aperture radar (ScanSAR) sigma data on

Envisat; Carlson (2007) using thermal and NDVI ob-

servations from Landsat]. However, these quantities are

either too sensitive to nonsoil moisture factors (such as

radar backscatter to surface roughness), or not directly

related to the soil moisture content (e.g., LST, A, and

VI). Consequently, SM estimates based on these finer-

scale satellite observations are less reliable than the

coarser-scale microwave radiometer observations, but

with the trade-off of being higher spatial resolution.

While the coarse-resolution SMAP radiometer ob-

servations may be the state-of-the-art data product

in terms of the best L-band radiometer antenna design

and radio frequency interference mitigation strategy,

downscaling to finer resolution will better meet SMAP

data user requirements, triggering wide research inter-

ests within the SM remote sensing community (Das et al.

2011). Many downscaling algorithms have been pro-

posed in literature (details in section 2).

To select the best algorithm for fusing the coarse-scale

SMAP radiometer and finescale radar or optical sensor

observations for an operational finescale SMAP SM

product, this study intercompares algorithms introduced

in recent literature using in situ SM measurements.

Three downscaling algorithms are introduced including

1) a linear regression algorithm using surface vegetation

and temperature observations (Fang et al. 2013), 2) a

data mining technique (regression tree), using visible

and thermal data (Gao et al. 2012), and 3) enhancement

of brightness temperature using oversampling of radi-

ometer scans (Chan et al. 2018). Details of these data

fusion algorithms are given in section 2. The in situ SM

measurements from seven intensive networks are used

here, including the Cooperative Center for Earth System

Sciences and Remote Sensing Technologies Soil Moisture

Advanced Radiometric Testbed (CREST-SMART) net-

work in Millbrook, New York; four USDA Agricultural

Research Service (ARS) watershed networks (Walnut

Gulch, Little Washita, Fort Cobb, and Little River); the

Tibetan Plateau network in China; and the OzNet in

Australia.

The objective of this study was to evaluate the rela-

tive performance of the candidate downscaling algo-

rithms and find out which one could be implemented

operationally in operational environment of the National

Environmental Satellite, Data, and Information Service

(NESDIS) (NOAA 2011). Operationalization criteria to

choose candidate algorithms include 1) that data sources

of higher-resolution observations (e.g., MODIS/VIIRS

VIs or LST) should be reliably available; 2) the algorithm

should be simple and stable for implementation; 3) the

algorithm must meet computational efficiency require-

ments with product latency less than 6h; and 4) that the

downscaled SM product has satisfactory accuracy.

2. Downscaling algorithms

There have been many downscaling or data fusion

algorithms introduced in the literature in the past de-

cades (Sabaghy et al. 2018). Table 1 presents a brief

summary of the candidate algorithms, categorized

in terms of finer-scale data sources and downscaling

methods. The finer-scale data sources include radar

backscatter from active microwave data (Entekhabi

et al. 2014; Sabel et al. 2007; Wagner et al. 2007) and

optical and/or thermal infrared satellite observations

(Zhan et al. 2002; Fang et al. 2013, 2018; Carlson 2007;

Petropoulos et al. 2009; Peng et al. 2016). Examples of

downscaling algorithms include linear regression ap-

proaches such as simple regression in Fang et al. (2013),

the multivariate regression method (Zhan et al. 2002),

the ‘‘universal triangle’’ theory-based methods (Piles

et al. 2011), the random forest method (Abbaszadeh

et al. 2019; Zhao et al. 2018), and the SMAP L2-SM-A/P

product algorithm to combine the SMAP radiometer

and radar observations (Entekhabi et al. 2014); the

change detection method (Narayan et al. 2006; Njoku

et al. 2002; Das et al. 2011); the data mining approach

such as regression tree introduced by Gao et al. (2012),

the neural network (NN) byAlemohammad et al. (2018)

and Soo et al. (2011), and the machine learning method

by Chakrabarti et al. (2016), Park et al. (2015), Im et al.

(2016), and Jiang et al. (2017); the Bayesian merging

method (Zhan et al. 2006); the combined modeling and

remote sensing method (Merlin et al. 2006, 2008; Fang

et al. 2013); the data assimilation method (Lievens

et al. 2015; Draper et al. 2009; Draper and Reichle
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2015; Reichle et al. 2001, 2017; Sahoo et al. 2013;

Parinussa et al. 2014); and the deterministic method

(Merlin et al. 2008; Ines et al. 2013).

The primary objective of this study is to find a

simple but reliable downscaling method that could be

implemented for operationally generating a finescale

soil moisture data product from SMAP radiometer ob-

servations. Thus, the linear regression approach (Fang

et al. 2013, 2018) and the regression tree data mining

technique (Gao et al. 2012) are first evaluated against

in situ soil moisture measurements together with the

NASA SMAP enhanced 9-km soil moisture product.

a. Downscaling algorithms to be evaluated

1) REGRESSION TREE ALGORITHM

The regression tree data mining technique was devel-

oped by Gao et al. (2012) to sharpen coarse-resolution

thermal satellite images using fine-resolution optical

products (e.g., reflectance, or VI). The approach has the

unique advantages of 1) automatically searching for

patterns among data samples without a predefined re-

lationship between variables; 2) using multiple inde-

pendent variables (e.g., vegetation indices, land surface

type, LST, etc.). In this study, the data mining tech-

nique was adopted to downscale the SMAP SM product

to 1-/9-km resolution using 1-km resolution visible and

thermal channel observations from MODIS.

The data mining approach automatically searches for

relationships between optical/thermal pixels at finescale

and SM at coarse scale, among sample pairs constructed

from homogeneous pixels, and then applies the pattern

to fine-resolution optical/thermal maps so as to predict

high-resolution SM. Therefore, the quality of ‘‘training

samples’’ is crucial to successful implementation of the

regression tree method.

The following factors need to be considered when col-

lecting the training samples. First, samples should be well

distributed throughout the experimental scene with a size

large enough in order to guarantee the training set to be

representative for different surface conditions. Second,

the relationship should be built on homogeneous pixels

only. A practical strategy to screen out outliers and pre-

serve homogeneous pixels is to select coarse-resolution

samples with coefficient of variation CV from subpixels

at a resolution less than a predefined threshold (Kustas

et al. 2004). The coefficient of variation CV is defined as

C
V
5s/m , (1)

where m and s are the mean and standard deviation of

the fine-resolution variables within the coarse-resolution

TABLE 1. Summary of data fusion algorithms in terms of data sources and downscaling approaches.

Type Input Examples Reference

Data sources Active microwave Radar backscatter SMAP L2-SM-A/P product Entekhabi et al. (2014), Wagner et al.

(2007), and Sabel et al. (2007)

Optical VI, albedo VIIRS SM product Zhan et al. (2002)

Thermal infrared LST LST changes and SM; ‘‘universal

triangle’’

Fang et al. (2013, 2018), Carlson (2007),

Petropoulos et al. (2009), and Zhan

et al. (2002)

Type Examples Reference

Downscaling

approaches

Linear regression Relationship between backscatter and soil moisture;

linear regression relationships between daily LST

changes and SM

Entekhabi et al. (2014) and Fang

et al. (2013)

Change detection Relationship between changes in radar backscatter

and SM

Njoku et al. (2002), Narayan et al. (2006),

and Das et al. (2011)

Regression

tree (RT)

A data mining technique to sharpen coarse-resolution

satellite imageries using fine-resolution products

Gao et al. (2012)

Neural

network (NN)

NN is trained with samples of AMSR-E BT matched

to SMOS L3 SM, which is then applied retrospec-

tively or future observations

Soo et al. (2011)

Bayesian merging Bayesian merging method to combine the

observations of 36-km radiometer and 3-km radar

Zhan et al. (2006)

Combined modeling

and RS

Models are used in the downscaling DISPATCH

method

Merlin et al. (2006, 2008) and

Fang et al. (2013)

Data assimilation Land surface model is used to capture spatial SM

patterns

Lievens et al. (2015), Reichle et al. (2001),

Sahoo et al. (2013), and Parinussa

et al. (2014)

Deterministic Using finescale SM obtained from a hydrologic model Ines et al. (2013), and Merlin et al. (2008)
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pixel. Here, the variables are surface leaf area index

(LAI) and LST (morning and afternoon). The CV was

calculated for each of the selected variables when multi-

ple variables are used. Obviously, the smaller the CV

value is, the purer the sample is (Gao et al. 2012). In this

study, the threshold for a valid sample was chosen as

CV , 0.2 (or 20%), consistent with previous study (Gao

et al. 2012). Third, to minimize the artificial box-like

patterns in SM at finescale based on the regression

relationship, a moving window approach was applied, in

which the central prediction area moves across the whole

experiment region with some overlap from the previous

area (Gao et al. 2012). Results showed that this method

was effective to remove the boundary effects because of

common samples from overlap regions.

In our implementation, MODIS global LAI and

Fraction of Photosynthetically Active Radiation (FPAR)

product (MOD15A2, V005) and LST (MOD11A1.006)

product are collected as fine-resolution data sources. The

original MODIS products at 1-km spatial resolution are

resampled to 9km for the process of downscaling SMAP

SM from 36 to 9km. Homogeneous pixels are first iden-

tified according to theCV ofMODISLAI and LST values

within the moving window. SMAP SM pixel is then

paired up with MODIS LAI and LST pixels over the

homogeneous 36-km pixels. With the training samples, a

regression tree composed of regression models and de-

fined model coefficients can be obtained for SM deriva-

tion. Once the model is built, the tree is applied to the

prediction areas to derive higher-resolution SM based on

finer-resolution LAI and LST inputs. To generate 9- or

1-km downscaled SMAP soil moisture products, the re-

gression tree models are implemented with the 9-km or

original 1-km MODIS LAI and LST.

2) THERMAL INERTIAL LINEAR REGRESSION

ALGORITHM

Based on the relationships between daily land surface

temperature changes and surface SM, Fang et al. (2013,

2018) tested a simple linear regression model to down-

scaleAMSR-E SM from 1/48 resolution to 1-kmMODIS

resolution. The algorithm was developed based on the

thermal inertial theory that drier soil corresponds to

larger diurnal temperature changes because the heat

capacity of water is greater than dry soil. Fang et al.

(2013) found that the disaggregated 1-km SM dataset

presents better spatial heterogeneity and accuracy, com-

pared to the coarse AMSR-E product, according to the

validation against in situ observations from Oklahoma

Mesonet and Little Washita networks.

This study has implemented the thermal inertial lin-

ear regression method of Fang et al. (2013) with two

changes. First, MODIS LAI is used to replace NDVI in

Fang et al.’s method to represent surface vegetation

conditions. The use of LAI is expected to overcome the

saturation issue of NDVI at moderate to high vegeta-

tion covers. Second, SM product derived from the

Atmosphere–Land Exchange Inversion (ALEXI) model

(Anderson et al. 1997, 2007; Hain et al. 2009) is used for

regression analysis instead of NLDAS soil moisture in

Fang et al.’s method (Fang et al. 2013). ALEXI SM re-

trievals have better spatial resolution of 8km, compared

to NLDAS SM of 12.5km. Moreover, the ALEXI model

has been rigorously evaluated over a wide range of cli-

matic and vegetation conditions (Anderson et al. 2007,

2011; Fang et al. 2016).

To apply Fang et al.’s (2013) method for a SMAP 9km

SM product, linear regression equations are developed

between the ALEXI SM and the diurnal range of

MODISLST for each of theMODISLAI levels (6 levels

with intervals of 2) on each of the 36-km grids of the

contiguousU.S. (CONUS) domain. The equation is then

applied to high-resolution LST (9km) to obtain fine-

scale soil moisture product. The difference between the

SMAP 36-km SM and the average of the four by four 9-

km SM is then used to correct the 9-km SM values from

their corresponding linear regression calculation. The

bias-corrected 9-km grid SM values are the final down-

scaled 9-km SMAP SM product.

3) RESAMPLING ALGORITHM FOR THE NASA
SMAP ENHANCED SM DATA PRODUCT

The NASA SMAP mission generated the Enhanced

radiometer-based SM product (L2/3_SM_P_E) at 9-km

grid (O’Neill et al. 2016; Chan et al. 2018; Jackson et al.

2016; Piepmeier et al. 2016). The SMAP radiometer

scans Earth’s surface at a constant incidence angle of 408
from nadir producing a combination of fore and aft

observations. Additionally, the reflector rate combined

with integration time leads to oversampling in the

along-scan direction. The sampling density therefore

enables estimation of minimum grid spacing needed to

mapping brightness temperature observations on a

global Earth-fixed grid at a spatial resolution of 9 km.

An enhanced SM product can then be derived based on

the higher-resolution brightness temperature. The final

L2_SMP_E SM retrieval data are released on a 9-km

Earth-fixed grid on the EASE Grid 2.0 global cylin-

drical projection as two-dimensional arrays of 1624

rows and 3856 columns (O’Neill et al. 2016; Jackson

et al. 2016). This study directly used this product in the

evaluation effort.

It needs to be noted that even though the Enhanced

product is mapped on the 9-km grid, the native resolu-

tion of the SMAP enhanced TB and SM data products is

still similar to the resolution of the SMAP standard
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TB and SM data products from the SMAP passive ra-

diometer (33 vs 36 km; Chan et al. 2018). The enhanced

products come from an optimal interpolation ap-

proach and more fully utilizes the oversampled along-

scan TB measurements in the original radiometer data.

Consequently, they are able to reveal spatial features at

finer spatial scale that are concealed or not immedi-

ately obvious in the standard SMAP products (Chan

et al. 2018).

b. SMAP SM products to be evaluated

The following five SMAP SM data products were

evaluated in this study: 1) SMAP standard radiometer

SM product at 36-km resolution (SMAP 36 km);

2) SMAP enhanced radiometer SM product at 9 km

(SMAP 9km); 3) downscaled SMAP SM at 9 km based

on the regression tree method, using 9-km MODIS

LST/LAI (RT 9km); 4) downscaled SMAPSMbased on

thermal inertial linear regression algorithm at 9 km

(LR 9km); and 5) downscaled SMAP SM at 1-km res-

olution based on the regression tree method, using 1-km

MODIS LST/LAI (RT 1km). Details are given in

Table 2. The NASA SMAP radiometer 36-km soil

moisture product and the enhanced radiometer 9-km

soil moisture product are obtained from the NASA

National Snow and Ice Data Center Distributed Active

Archive Center (NSIDCDAAC; Colliander et al. 2017b).

The analysis in this study uses retrievals from these prod-

ucts when the retrieval quality flag indicated recom-

mended quality, screening out high uncertainty pixels.

3. Soil moisture in situ measurements

Two types of in situ soil moisture measurement

datasets were collected and used to evaluate the above

SMAP soil moisture data products. One is the soil

moisture measurements from various numbers of mea-

surement stations of four groups of individual intensive

networks across different continents. The other is the

spatially matched up soil moisture datasets provided by

NSIDC DAAC (Colliander et al. 2017b). Details of the

intensive networks and the matched up datasets are

briefed as follows.

a. CREST-SMART network

The Soil Moisture Advanced Radiometric Testbed

(SMART) is a SM observation network in Millbrook,

New York, developed and maintained by NOAA

Cooperative Remote Sensing Science and Technology

(CREST) Center of the City University of New York

(M. Temimi et al. 2011, meeting presentation). In ad-

dition to the standard NOAA Climate Reference

Network (CRN) site located in the property of the Cary

Institute of Ecosystem Studies, seven sites surrounding

the CRN site have been equipped with SM and soil

temperature probes for three soil depths (2.5, 5, and

10 cm), but only four stations have collected data with

reasonable time coverage and are used in this study. The

data are automatically collected and delivered to the

SMART website every 15min daily since later 2015.

TheMillbrook region is a composite of open agricultural

fields (;40%) and forested terrains (;60%) with a

small urban fraction of Millbrook Township. However,

the in situ soil moisture and temperature probes are

installed within the agricultural fields. Detailed infor-

mation about CREST-SMART network can be found at

https://www.noaacrest.org/smart/.

b. USDA ARS networks

USDA ARS has built and maintained SM monitor-

ing networks covering several watersheds within the

CONUS (Jackson et al. 2010). Data from four of

the ARS networks are used in this study, including the

networks in the Walnut Gulch Watershed in Arizona

(Keefer et al. 2008), the Little Washita River and

Fort Cobb Reservoir Experimental Watersheds in

Oklahoma (Cosh et al. 2006, 2008, 2014), and the

Little River Watershed in Georgia (Bosch et al. 2007).

A dense in situ SM network developed in the Walnut

Gulch Watershed in Tombstone, Arizona, has been

collecting SM measurements since 2002. The watershed

contains 19 Stevens Water Hydra Probe surface (5 cm)

TABLE 2. SMAP SM products evaluated.

ID Satellite SM products Resolution Spatial coverage Temporal coverage

SMAP 36 km SMAP 36 km (L2_SM_P) 36 km Global April–October 2015, April–October 2016

SMAP 9 km NASASMAP enhanced 9 km (L2_SM_P_E) 9 km Global April–October 2015, April–October 2016

RT 9 km Downscaled SMAP SM based on data

mining method, using MODIS LST/LAI

9 km Global April–October 2015, April–October 2016

LR 9 km Downscaled SMAP SM based on thermal

inertial linear regression algorithm

9 km CONUS April–October 2015, April–July 2016

RT 1 km Downscaled SMAP SM based on data

mining method, using MODIS LST/LAI

1 km Global April–October 2015, 2016
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SM sensors installed at the USDA sites within the wa-

tershed. This watershed is about 150 km2 in a semiarid

climate region with land cover of mainly rangeland

(83%), forest (12%), and miscellaneous (5%) (Renard

et al. 1993). The Little Washita Watershed is located to

the southwest of Oklahoma City covering approxi-

mately 610 km2 in subhumid to semiarid climate region

with 20 SM stations deployed uniformly across the

domain with a surface sensor at 5 cm horizontal depth.

Land use types include grassland/rangeland (68%),

cropland (20%), forests (8%), and miscellaneous uses

(4%). The Fort Cobb Watershed is a neighboring wa-

tershed with 15 SM stations and is dominated by

row cropping and some irrigation. The Little River

Watershed is about 334 km2 in size and located in

south-central Georgia, with land types consisting of

woodland (40%), row crops (36%), pasture (18%), and

4% water. Little River has approximately 33 stations

distributed across the entire domain.

c. OzNet hydrological monitoring network

The OzNet hydrological monitoring network is an

Australian monitoring network for SM and microme-

teorology developed by Monash University and the

University of Melbourne (Smith et al. 2012). The net-

work consists of the regional Murrumbidgee sites along

with three focused experimental areas inYanco, Kyeamba,

and Adelong Catchments. The Murrumbidgee Catchment

has high spatial variability in climate varying from semiarid

in the west to humid in the east. It is predominantly

agricultural with the exception of steeper parts of the

catchment, which are a mixture of native eucalypt for-

ests and exotic forest plantations. The Yanco network

is a 60 km 3 60 km square area to the southwest of the

Yanco Research Station. It is a large flat area with land

use of irrigation. Kyeamba is a medium to small catch-

ment about 600km2 where topography is dominated

by gentle slopes with predominant land use of sheep

and beef grazing. Adelong Catchment is a relatively

small catchment (;145km2) compared to Yanco and

Kyeamba with steep slopes.

d. Tibetan Plateau SM networks

Several SM measurement networks have been de-

veloped in the Tibetan Plateau by the Chinese Academy

of Sciences since 2010 (Yang et al. 2013). SM data from

the in situ network over the Zoige grassland of the

eastern Tibetan Plateau were used for this study. The

network contains about 25 stations covering about

100 km 3 60 km area with sensors at 5-, 10-, 20-, 40-,

and 80-cm depths (Su et al. 2011). The land surface type

is a uniform land cover of short grassland used for

grazing by sheep and yaks.

e. Matched-up validation data pairs

The NASA SMAP core validation and calibration

partners at each network conducted spatial upscaling of

the in situ SM measurements within SMAP reference

pixels to better capture the spatial heterogeneity at

SMAP product grid size (Colliander et al. 2017a). A set

of core validation sites where well-calibrated in situ SM

measurements were selected. The matched-up pairs of

upscaled in situ measurements and SMAP products are

built for those validation core sites (O’Neill et al. 2016).

The sampling requirements for the SMAP mission

specified that 9-km core sites should have at least five

stations that have 70% confidence for 0.03m3m23 SM

uncertainty with 0.05m3m23 variability (Famiglietti

et al. 2008; Colliander et al. 2017a). The Voronoi dia-

gram technique was used as the default approach to

defining weights of the qualified stations distributed

within the pixel. The matched-up in situ measurements

at SMAP 9-km grid sizes are used here for the above

sites. The NASA SMAP matched-up in situ validation

datasets were generated for four different grids: 36, 33,

9, and 3 km. The 36-km dataset was paired with the

SMAP standard 36-km SM product while the 9-km

dataset was used to evaluate the 9-km downscaled or

the resampled SMAP enhanced SM products.

4. Visual comparison of coarse- and finescale
SMAP SM maps

Before quantitative evaluation of the downscaled

SMAP SM data products, these products for some re-

gions were mapped for preliminary visual examination.

Figure 1 shows the comparison of SMAP SM datasets

at coarse and fine scales over the Oklahoma region

(100.158–94.538W, 34.28–37.068N) on 30 April 2015

(Fig. 1a). Themaps include the standard SMAP passive

SM product at 36 km, the standard enhanced 9-km

product, downscaled SM date set based on the thermal

inertial linear regression method at 9 km, and one

downscaled SM retrieved from the data mining algo-

rithm at 1 km, respectively. The downscaled map at

9 km using data mining method is not shown here be-

cause the pattern looks similar to that of the 1-kmmap,

only with less spatial details. The 1-km map shown in

this figure is able to represent the performance of the

data mining (regression tree) approach using MODIS

LST and LAI.

The comparison illustrates successful implementation

of downscaling algorithms. The dry-to-wet transition

pattern from western to eastern Oklahoma is well cap-

tured in all SM datasets. More spatial details can be

detected as the resolution was increased. For instance,
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the boundary of theArkansas River and the shape of the

Canadian River became clearer as the resolutions were

disaggregated from 36 to 9km and to 1 km. Notably, the

finest-scale map at 1 kmwas able to show the small lakes

and reservoirs that spread across the state, such as Lake

Altus and the Tom Steed Reservoir to the very south-

west of Oklahoma, the Great Salt Plains Lake to the

north, and Lake Thunderbird toward the southeast of

Oklahoma City.

Figure 1b shows the SMAP SM maps over northeast

Texas bordering Oklahoma, Arkansas and Louisiana

states (988–92.58W, 318–358N) on 2 April 2016. Similar

conclusions can be drawn that the candidate downscaled

algorithms are capable of producing SM maps with sig-

nificantly improved spatial heterogeneity. Much drier

conditions can be detected extending from the north-

western corner of the region to the Dallas city area,

compared to that in southern Arkansas and northern

Louisiana where SM greatly increases to around 0.40

to 0.45m3m23. To better demonstrate the enhance-

ment in spatial heterogeneity, two subregions over the

river and reservoir area outlined by red and black

FIG. 1. Comparison of SMAP SM products (m3m23) at coarse scale and finescale, including (from left to right) SMAP SM product at

36 km, enhanced SMAP radiometer-based SM at 9 km, downscaled SMAP SM at 9 km using thermal inertial LRmethod, and downscaled

SMAP SM at 1 km using a regression tree algorithm: (a) Oklahoma region (100.158–94.538W, 34.28–37.068N) on 30 Apr 2015, (b) Texas

region (988–92.58W, 318–358N) on 2 Apr 2016, (c) zoomed-in region from the black box in (b), and (d) zoomed-in region from the red box

in (b).
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boxes in Fig. 1b are magnified in Figs. 1c and 1d, re-

spectively. Notably, the big reservoirs of Sam Raybum

and Toledo Bend at the boundary of Louisiana and

Texas stand out in the downscaled 9-km map obtained

from thermal inertial method and the 1 km map from

the regression tree approach (Fig. 1c). The other

zoomed-in figure in Fig. 1d shows that the outline of

red river becomes visible in the 9-km map derived

from thermal inertial method using ESI and very clear

in the 1-km map.

5. Quantitative evaluation of the coarse- and
finescale SMAP SM products

The performance of candidate downscaling algo-

rithms is evaluated using in situ SM observations. A

typical validation method, which directly compares

satellite retrievals with ground observations point by

point is being widely used for evaluation of satellite-

based products. However, the traditional validation

approach inevitably results in mismatch issue between

ground observations and SMAP pixel caused by the

heterogeneity of land surface. The scaling issue has

been a challenging topic in validation of satellite SM

retrievals. Spatial upscaling of individual ground sites

to satellite reference pixels is expected to address

the issue of spatial-to-pixel soil moisture variability.

Therefore, the assessment of downscaled products

was carried out from two perspectives. One is based

on in situ observations for each individual network

and the other is based on upscaled in situ observa-

tions, which would provide complementary informa-

tion and assessment to the performance of SM products.

Upscaling techniques employed to upscale individual

stations to SMAP pixel scale include Voronoi diagram,

soil type and land cover based weights, arithmetic av-

erage, etc. (Famiglietti et al. 2008; Colliander et al.

2017a). Performance metrics of the two validation ap-

proaches will provide complementary information and

assessment to SMAP SM datasets accuracy at the coarse

and finescale.

Results from site-by-site evaluation are given for each

of the individual in situ networks in section 5a through

section 5d, while the analysis using the matched-up

in situ observations in section 5e. The comparison over

some sample stations is presented first, which is then

followed by the statistics of unbiased RMSE (ubRMSE)

and correlations averaged over all the ground stations

within each network.

Time series comparison of the SMAP 36-km product,

the downscaled datasets and in situ SM measurements

averaged over four ground stations is shown in Fig. 2. In

general, all satellite based retrievals were able to capture

the dry and wet surface SM signals as reflected in the

in situ measurements, although biases can be found for

certain sites or over certain time periods. The per-

formance matrix of each in situ network with average

error statistics is presented in Fig. 3. Validation over

the OzNet and Tibetan Plateau networks exclude the

linear regression algorithm based on ESI dataset be-

cause the spatial coverage of the current ESI prod-

uct extends only over the North America region.

Detailed analysis on individual stations is given first,

followed by the results based on the matched up in situ

measurements.

a. CREST-SMART NY network

Figure 2a presents the time series comparison be-

tween satellite retrievals and in situ observations aver-

aged over four stations in CREST-SMART network

(the Green House, the Fountains, the Dutchess Day

School, and the Gifford House). The wet and dry dy-

namics match well but present a significant wet bias in all

satellite-based SM datasets. However, the biases are

reduced for the downscaled data (colored dots vs black

dots in Fig. 2a). For instance, the ubRMSE and corre-

lation of the SMAP coarse-resolution product over the

Fountains (one of the four sites) site was 0.069 and

0.551m3m23, respectively. The enhanced 9-km product

was very comparable to the coarse-resolution product

with ubRMSE of 0.062m3m23 and correlation of 0.662.

The linear regression algorithm using ESI provided the

highest performance with significant reduction of

ubRMSE by 0.037m3m23 and increase in correlation

by 0.345.

Error statistics averaged from the four sites in the

CREST-SMART network is shown in Fig. 3a with

ubRMSE on the left of bar chart and correlation on the

right. The NASA enhanced 9-km product shows mod-

erate improvement in accuracy. Evidently, use of the

thermal inertial linear regression algorithm showed

the largest improvement. However, products using the

data mining method did not show any improvement

in accuracy, and yet had slightly higher RMSE by

0.01m3m23 and lower correlation by 0.1 compared to

SMAP coarse-resolution product. As stated in section 3a,

the site is highly heterogeneous with agricultural fields

and forests. The small agricultural fields where the

in situ measurement probes were installed comparing

to the 9- and 36-km grids might not be fairly repre-

sentative to the soil moisture retrieved for the 9- or

36-km grids because of the forests damping effects.

The ESI used in this algorithm was developed on 8-km

scale using LST and evapotranspiration retrievals that

contains more soil moisture information even for the

forested patches. Consequently, the ESI based linear
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regression algorithm showed better results that the

coarse-scale product.

b. USDA ARS network

Time series of SMAP coarse-resolution product and

downscaled products compared with averaged in situ

observations over 20 stations of the Little Washita

Watershed are shown in Fig. 2b for warm season in

2015 and Fig. 2c in 2016, respectively. The plots il-

lustrate an overall satisfactory performance of all

satellite based retrievals, being able to capture the

wetting and drydowns. All satellite SM retrievals

are very much alike. The Little Washita sites do not

depict obvious bias in the downscaled SM retrievals

throughout the validation period in 2015 (Fig. 2b).

However, a slightly dry bias can be found in satellite

SM retrievals from late May until the end of July in

2016 (Fig. 2c).

Similarly, the averaged ubRMSE of each satellite SM

product for the USDA ARS networks over the warm

season (April–October) of 2015 and 2016 is shown in

Fig. 3b. Downscaled SMAP products showed a decrease

in ubRMSE and increase in correlation. The improve-

ment in the enhanced 9-km dataset is very consistent

over warm seasons. The data mining algorithms and the

simple linear regression method showed comparable

performance.

c. OzNet network

The OzNet network in Australia provides long-term

field measurements with very high quality. In situ ob-

servations averaged over 34 sites from the Yanco net-

work and 7 sites from Kyeamba network compared

with satellite SM retrievals are plotted in Figs. 2d and 2e,

respectively. Both SMAP original and downscaled

products agree very well with the ground measurements

over the validation period extending from September

2015 to May 2016.

At the Yanco sites, the 36-km and enhanced 9-km

products underestimated the SM from November to

December 2015. The downscaled 1-km product re-

trieved from the data mining method slightly corrected

the dry biases over that period. However, SM retrievals

at 9-km resolution from the data mining method drifts

FIG. 2. Time series comparison of satellite SM retrievals and in situ observations over (a) CREST-SMART networks (four sites’

averages from April to July 2016), (b) Little Washita Watershed in 2015 (20 sites’ averages from April to October), (c) Little Washita

Watershed in 2016 (20 sites’ averages from April to October), (d) Yanco (34 sites’ averages from September 2015 to May 2016), and

(e) Kyeamba (7 sites’ averages from September 2015 to May 2016).
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away to even drier estimates. Overestimation can be

found for many wetting instances associated with rain-

fall events throughout the validation period, such as the

end of December 2015 and 20 March 2016 in the Yanco

network and mid-March of 2016 in the Kyeamba net-

work. For those instances of overestimation, the down-

scaled 9-km product using the regression tree approach

seemed to be able to correct the wet bias to a certain

extent. Standard SMAP 36-km SM product and the

Enhanced product present similar dynamics over the

Kyeamba sites with an obvious dry bias over the period

from November 2015 to April 2016, while downscaled

products from either the regression tree algorithm or

the thermal inertial algorithm showed lower bias than

standard SMAP products.

Overall, the downscaled products showed lower

ubRMSE and higher correlation than the coarse-scale

SMAP SM products according to the performance ma-

trix in Fig. 3c. The enhanced 9-km data evaluation had

comparable results to the coarse-resolution SMAP SM

product with slight improvement in both ubRMSE and

correlation. Disaggregated 9- and 1-km products using

regression tree method have seen lower ubRMSE than

the coarse-resolution SMAP SM product and the en-

hanced product.

d. Tibetan Plateau network

Validation carried out using the Tibetan Plateau

ground measurements was conducted over a short 3-

month period fromApril to June 2015. According to the

error statistics shown in Fig. 3d, downscaling did not

show improvement in either ubRMSE or correlation for

data from this network. In this instance, finer-resolution

data showed a rise in ubRMSE compared to the SMAP

36-km product. An investigation on why the downscal-

ing performance was poor over that region is ongoing.

The short time series availability is a big concern, as a

few bad measurements may introduce large uncer-

tainties in the comparison results.

e. Evaluation using matched-up in situ measurements

The above results are based on site by site analysis.

This section evaluates all the SM retrievals from candi-

date downscaling algorithms from another perspective.

FIG. 3. Performance matrix of SMAP SM products at coarse-resolution product (SMAP 36 km) and downscaled

products for (a) CREST-SMART network (April–July 2016), (b) USDA ARS network (April–October 2015,

2016), (c) OzNet (September 2015–May 2016), and (d) Tibetan Plateau network (April–July 2015). Downscaled

products include the enhanced 9-km product (SMAP 9 km), the product from the thermal inertial LRmethod (RT

9 km), the product from the regression tree at 9 km (LR 9 km), and the product from the regression tree at 1 km

(RT 1 km).
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Instead of using observations from individual ground

site, the comparison is built on the average SM within

the reference SMAP pixels after spatial upscaling. The

objective of upscaling is to capture the spatial hetero-

geneity of surface SM distribution. Evaluation based on

matched-up in situ observations provides an additional

insight into the quality of the SM estimates and the

performance of the downscaling algorithms.

The matched-up in situ dataset was provided by

NASA Cal/Val team at 9-km pixel resolution over the

period ofApril–July 2015 (O’Neill et al. 2016). The 9-km

matched-up in situ dataset is used to evaluate those

three disaggregated 9-km products (SMAP 9km, LR

9km and RT 9km). At this point, there are no matched-

up in situ data to validate the 1-km SM dataset derived

from the regression method.

The scatterplots of downscaled SM retrievals for the

matched-up datasets for the sites in TxSON(48010902)

and Walnut Gulch (16010921) are shown in Fig. 4.

TxSON network has been selected by NASA Cal/Val

team as a core calibration and validation site for SMAP

mission (Colliander et al. 2017b). The in situ mea-

surements of TxSON are geographically distributed

within the SMAP 3-, 9-, and 36-km EASE-2 grid with

replication at each satellite footprint (Caldwell et al.

2018). At the TxSON site (Fig. 4a), the thermal inertial

LR algorithm (LR 9km) was found to be very com-

parable to SMAP enhanced product (SMAP 9km),

matching precisely with the upscaled in situ measure-

ments, although dry biases can be detected. However,

the regression tree method (RT 9 km) presented

a relatively larger fluctuation compared to other

algorithms for these sites in TxSON network. At

Walnut Gulch (Fig. 4b), the SMAP enhanced product

has shown an obvious dry bias while the remaining

downscaled SM products correct the underestima-

tions to a certain degree.

The ubRMSEs of each SM product averaged from all

matched-up pairs are listed in Table 3. The statistics

indicate that all the downscaled SM products show

reasonable agreement with the matchup in situ mea-

surements. The ubRMSE of 9-km SM dataset using

the regression tree algorithm and the SMAP enhance

product are close to each other while the lowest

ubRMSE comes from thermal inertial LR method.

6. Discussion and conclusions

To find a reliable downscaling algorithm for opera-

tional downscaling of SMAP coarse-scale SM retrievals,

this study evaluated three algorithms using site-by-site

comparison from intensive in situ SM networks across

different continents, as well as matched-up in situ ob-

servations within SMAP reference pixels.

The site-by-site validation results indicated that the

downscaled 9-km SMAP SM data presented better

overall agreement with the in situ measurements for

most of networks, compared to the SMAP 36-km

product. For CREST-SMART network in New York

(Fig. 3a), the NASA enhanced 9-km product showed

moderate improvement in accuracy while the largest

improvement came from the thermal inertial lin-

ear regression algorithm which reduced ubRMSE by

0.037m3m23 and strengthened correlation by 0.345.

Retrievals from the regression tree method present

slightly lower ubRMSE but lower correlation coeffi-

cients at the same time. The validation results on the

USDA ARS networks (Fig. 3b) indicate that the se-

lected downscaling algorithms improve surface SM

accuracy with reduced ubRMSE over the validation

FIG. 4. Scatterplots of downscaled SM products with respect to core validation site averages for (a) TxSON

(48010902) and (b) Walnut Gulch (16010921) with performance metrics for those sites.
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period. The ubRMSE of SMAP enhanced product is

very close to that of the original SMAP SM retrievals

at 36-km resolution. The accuracy of products derived

from the regression tree method is considerably en-

hanced at both 9- and 1-km scales. Among data fusion

algorithms tested, the thermal inertial linear regres-

sion method shows the best agreement with the in situ

observations by showing the highest correlation of

0.729. SMAP SM retrievals at coarse and finer reso-

lutions were validated with ground observations from

the OzNet network over the period extending from

September 2015 to May 2016 (Fig. 3c). It is encour-

aging to find that both downscaled products show

lower ubRMSE and higher correlation than those

from the coarse-scale SMAP SM product. However,

downscaled SM datasets did not show significant

positive impact when compared to the Tibetan ground

observations (Fig. 3d). The ubRMSE difference be-

tween SMAP 36-km and disaggregated 9-km SM was

found to be marginal. Rather, the correlation became

lower after downscaling. The root cause of this lower

correlation needs further investigation.

The 9-km matched-up in situ dataset was adopted

to assess the relative performance of the downscaled

9-km SM products. The matched-up in situ observa-

tions cover the period of April–July 2015 (O’Neill

et al. 2016). All downscaled datasets outperformed

the coarse-resolution SMAP product with the lowest

ubRMSE coming from the downscaled 9-km product

derived from the inertial thermal linear regression

method (LR 9 km).

Optical and thermal satellite observations at higher

spatial resolution proved to be good sources to disaggre-

gate microwave products at coarse resolution. However,

algorithms using optical/thermal observations could not

be obtained for cloudy areas. Future work shall involve

the introduction of microwave brightness temperature

observations (AMSR2) under cloudy conditions to im-

prove spatial coverage. In addition, the downscaling

method of combining active and passive microwave

observations shall be included in future work. The

NASA SMAP mission has been testing the SAR data

fromESA’s Sentinel-1A, replacing the SMAP radar data

in the algorithm for the high-resolution SMAP SM

product. This Sentinel-1A and SMAP radiometer com-

bined product will be tested in future work.

Another limitation in the validation of downscaled SM

products in this study is the lack of the comparison using a

spatial distributed high-resolution SM as a reference. It

would be ideal to compare downscaled products with

spatially distributed high-resolution soil moisture like air-

borne soil moisture dataset. However, airborne data were

not available at the time we were doing this assessment.

The main goal was to evaluate characteristics of dif-

ferent downscaling algorithms under the operationali-

zation criteria and transition downscaled high resolution

SMAP SM product into NOAA numerical weather

prediction (NWP) and national water model (NWM)

TABLE 3. Performance statistics of downscaled SMAP SM product (m3m23).

Dataset ID

(Matchup in situ

ID at 9-km scale)

Bias RMSE R ubRMSE

SMAP (Matchup

ID 33 km)

RT

9 km

LR

9 km

SMAP

9 km

RT

9 km

LR

9 km

SMAP

9 km

RT

9 km

LR

9 km

SMAP

9 km

RT

9 km

LR

9 km

Walnut Gulch

(16010921)

20.019 (16013302) 0.0066 20.0094 0.032 0.0231 0.0134 0.679 0.3069 0.5054 0.0270 0.0222 0.0096

Walnut Gulch

(16010922)

— 0.0153 0.0147 — 0.0098 0.0142 — 0.9014 0.8942 — 0.0019 0.0045

Little Washita

(16020917)

20.0421 (16023302) 20.0198 20.082 0.041 0.0311 0.082 0.9147 0.9324 0.89 0.0272 0.024 0.032

Little River

(16040904)

0.090 (16043302) 0.148 0.0507 0.0947 0.1481 0.0563 0.8553 0.8148 0.6235 0.0289 0.006 0.0245

Kenaston

(27010903)

20.0423 (27013301) 20.0298 20.0037 0.0547 0.0196 0.0236 0.6984 0.812 0.7413 0.0347 0.0202 0.0233

Valencia

(41010902)

— 20.0197 — — 0.0339 — — 0.5629 — — 0.0276 —

Yanco

(07010903)

0.0095 (07013301) 0.0188 — 0.0567 0.0392 — 0.8341 0.9023 — 0.0347 0.0344 —

Yanco (7010904) — 0.0443 — — 0.0676 — — 0.9334 — — 0.051 —

TxSON

(48010902)

20.0151 (48013301) 0.0302 0.0044 0.0322 0.0552 0.0096 0.9266 0.814 0.9972 0.0295 0.0462 0.0085

TxSON

(48010911)

— 0.019 20.0207 — 0.0392 0.0312 — 0.7856 0.8685 — 0.0343 0.0233

Average 20.0032 0.0213 20.0066 0.0519 0.0466 0.0329 0.8180 0.7766 0.7886 0.0303 0.0268 0.0180
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operations. The Soil Moisture Operational Product System

(SMOPS) has been operational at NOAA/NESDIS since

2013, which is well positioned to take research advances

attained during the research phase and work toward

operational transition at NOAA (Zheng et al. 2018).

The SMOPS provides global SM data products from

individual sensors, such as the MetOp-A and MetOp-B

ASCAT of EUMETSAT,GCOM-W1AMSR2 of JAXA,

and SMOS of ESA, as well as a blended product from all

these products. The candidate downscaling algorithms

discussed in this study are all simple and stable to be

implemented, and the data sources of higher-resolution

observations are reliable and can be accessed at NOAA

NWP and NWM operations. Once the downscaling al-

gorithm is finalized and high-resolution SMAP SM is

generated, the downscaling system will be integrated

into SMOPS framework.

In summary, these results indicate that 1) downscaled

9-km SM products from all downscaling algorithms

generally outperform the coarse-scale 36-km product

for most in situ datasets; 2) NASA enhanced SM prod-

uct at 9-km grid resolution using SMAP overlapped

radiometer observations is very consistent with the

36-km SMAP SM product with moderate improved ac-

curacy; 3) the data miningmethod using optical or thermal

observations proved to have overall good performance in

the generation of a fine-resolution product—both dis-

aggregated 9- and 1-km SM datasets showed improve-

ments in accuracy compared to the coarse-resolution

product globally; and 4) the downscaled 9-km SM

product using the ESI in the thermal inertial linear re-

gression method had the best agreement with the in situ

datasets over the CONUS domain. The simple linear

regression method is promising for the operational

generation of a fine-resolution product.
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